Cofactor-Independent Phosphoglycerate Mutase from Nematodes Has Limited Druggability, as Revealed by Two High-Throughput Screens

نویسندگان

  • Gregory J. Crowther
  • Michael L. Booker
  • Min He
  • Ting Li
  • Sylvine Raverdy
  • Jacopo F. Novelli
  • Panqing He
  • Natalie R. G. Dale
  • Amy M. Fife
  • Robert H. Barker
  • Martin L. Kramer
  • Wesley C. Van Voorhis
  • Clotilde K. S. Carlow
  • Ming-Wei Wang
چکیده

Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z'-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a "druggability paradox" of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cofactor-independent phosphoglycerate mutase has an essential role in Caenorhabditis elegans and is conserved in parasitic nematodes.

Phosphoglycerate mutases catalyze the interconversion of 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms that are either cofactor (2,3-diphosphoglycerate)-dependent or cofactor-independent. The two enzymes have no similarity in amino acid sequence, tertiary structure, or catalytic mechanism. Certain organisms including vertebrates have o...

متن کامل

The role of the C-terminal region in phosphoglycerate mutase.

Removal of the C-terminal seven residues from phosphoglycerate mutase from Saccharomyces cerevisiae by limited proteolysis is associated with loss of mutase activity, but no change in phosphatase activity. The presence of the cofactor 2, 3-bisphosphoglycerate, or of the cofactor and substrate 3-phosphoglycerate together, confers protection against proteolysis. The substrate alone offers no prot...

متن کامل

Mechanism of catalysis of the cofactor-independent phosphoglycerate mutase from Bacillus stearothermophilus. Crystal structure of the complex with 2-phosphoglycerate.

The structure of the complex between the 2, 3-diphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus and its 3-phosphoglycerate substrate has recently been solved, and analysis of this structure allowed formulation of a mechanism for iPGM catalysis. In order to obtain further evidence for this mechanism, we have solved the structure of this iPGM complexed...

متن کامل

The bisphosphonomethyl analogue of 2,3-bisphosphoglycerate inhibits yeast but not wheat-germ phosphoglycerate mutase.

The bisphosphonomethyl analogue of 2,3-bisphosphoglycerate [4-phosphono-2-(phosphonomethyl) butanoate] was a potent competitive inhibitor of cofactor-dependent phosphoglycerate mutase from yeast, with a Ki of 0.8 mM. In contrast, the analogue did not affect the activity of cofactor-independent phosphoglycerate mutase from wheat germ. It is considered that this compound should be particularly us...

متن کامل

In vitro gene silencing of independent phosphoglycerate mutase (iPGM) in the filarial parasite Brugia malayi

BACKGROUND The phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3-phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms. They can be classified as cofactor-dependent PGM (dPGM) or cofactor-independent PGM (iPGM). Vertebrates, yeasts, and many bacteria have only dPGM, while higher plants, nematodes, archaea, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014